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Abstract. We present a pseudopotential method to study the absorption spectroscopy of NO in an argon
matrix modeled by a large albeit finite cluster. The excited states of NO are described with the virtual or-
bitals of a NO+ Hartree-Fock calculation plus a core-polarization operator to account for the electron-NO+

correlation. The argon atoms of the matrix are replaced by pseudopotentials for the repulsive contribu-
tions and core-polarization operators to account for matrix polarization and correlation with the excited
electron. The model is shown to account for the matrix-induced transition shifts and also for the cut-off
of the Rydberg series for n > 3 reported in absorption experiments from the ground state.

PACS. 31.50.+w Excited states – 31.70.Dk Environmental and solvent effects

1 Introduction

The spectroscopy of elementary systems such as atoms,
molecules or small clusters trapped in matrices has
been the object of continuous investigations until now
[1–14]. From a theoretical point of view, the determina-
tion of spectroscopic properties still remains a challenge
for ab initio calculations due to the difficulty to pro-
vide a correct description of the interaction of the excited
states with the numerous electrons of the surrounding in-
ert atoms.

Among the simple models used to deal with Rydberg
series in matrices, one may cite the Wannier exciton model
[2] and the quantum defect model [10,11]. Both models
assume a simple coulombic interaction and an effective
dielectric constant to represent the matrix. Such models
of the matrix are however actually not adequate to provide
a correct microscopic description of the interactions and to
account for the discrete structure of the perturbing atoms.
In particular, none of them does account for the cut-off of
the Rydberg series in the matrix nor can quantitatively
predict the observed shifts. Empirical harmonic fits of the
potential surfaces have been also used, especially to follow
the post-excitation dynamics and the so-called electronic
bubble propagation [13].

The diatomic in molecules model (DIM) is often a
good candidate to provide a simplified albeit still quan-
tum treatment of ground and excited molecular states in
extended systems, such as for instance small van der Waals
clusters like NaArn [15,16], HgArn [17] or I2Ar [18], im-
purities in rare gas liquids [19] or in rare gas matrices [20].
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The DIM scheme is however more adapted to valence ex-
cited states which can be reasonably well-approximated
as combinations of atomic or diatomic localizable frag-
ment wavefunctions showing weak overlap. Its use is less
relevant in the case of semi-Rydberg or Rydberg states
due to the (very) diffuse nature of the associated orbitals.
Moreover, the diatomics fragment potential curves which
constitute the data inputs for the construction of a DIM
Hamiltonian are not necessarily available experimentally
nor theoretically.

We describe and use in the present work a general
method closer to ab initio Quantum Chemistry to study
the absorption spectroscopy of small systems embedded
in inert gas clusters or matrices and based on pseudopo-
tential techniques. The methodology relies on the explicit
description of the active system electrons and on the repre-
sentation of the rare gas atoms (Rg) via pseudopotential
techniques. Several authors have investigated with such
scheme the excitation of active alkali atoms (single active
electron) trapped in inert matrices [21–23]. A few applica-
tions to molecules were also achieved. Nemukhin et al. [22]
have applied a local pseudopotential scheme to study the
spectral shifts for a sodium dimer trapped in krypton in
the framework of the Hartree-Fock approximation. They
were able to reproduce theoretically shifts with opposite
signs experimentally observed [24] for A–X and B–X tran-
sitions respectively. Very recently, we have introduced on a
similar example, namely Na2 embedded in argon, a scheme
which accounts for explicit correlation effects (two active
valence electrons for the sodium dimer) as well as the po-
larization of the passive system [23].

The present paper is dedicated to the theoretical study
of the Rydberg states observed in absorption spectroscopy
for the NO molecule trapped in argon, which can been



220 The European Physical Journal D

considered as an experimental test case [12–14]. We first
report the general theoretical framework and then develop
its adaptation and application to the NO molecule.

2 General methodology

The general methodology [23] relies on a partition of the
full system into

(i) an active part, namely the trapped subsystem, the
electrons of which are treated explicitly, via quantum
chemical methods, Hartree-Fock and eventually Con-
figuration Interaction(CI),

(ii) the rare gas atoms of the matrix, the electrons of which
are substituted by pseudopotentials.

In the most general formulation, the Hamiltonian can
thus be expressed as

H =
∑
i
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(
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where the sums refer to the active electrons ri of the
trapped system (M), its nuclear coordinates RA, and the
coordinates Rµ of the rare gas atoms (Rg). ZA is the net
charge on nucleus A.

The first bracketted term of the above expression rep-
resents the Hamiltonian of the active electrons in the field
of the nuclei of the molecule and the rare gas atoms re-
placed by pseudopotentials Ŵµ. The inner electrons of the
active molecule can themselves be substituted by stan-
dard atomic core pseudopotentials ŴA (usual semi-local
or non-local Hartree-Fock extracted valence atomic pseu-
dopotentials). The Ŵµ pseudopotentials describe the re-
pulsive interaction between the active electrons and the
rare gas electrons as induced by the exclusion Pauli prin-
ciple. They were also determined in semi-local and non-
local form. The V̂ polA and the V̂ polµ are the so-called core
polarization operators which allow to go beyond the frozen
core approximation, both for the atomic cores and the
rare gas atoms. They describe the static and dynamical
polarization of the initially frozen part, the atoms of the
matrix, and the atomic inner cores. The second term rep-
resents the correlation of the explicit electrons of the ac-
tive system. The three last terms includes the interaction
between the frozen part, respectively atomic core-atomic
core Coulomb repulsion, atomic core-rare gas repulsion
and rare gas-rare gas interactions. The repulsive atomic
core-rare gas contributions are negligeable in the usual

range of distance, whereas the rare-gas rare-gas cohesion
forces will be kept constant in the present study not in-
vestigating matrix relaxation.

The e−Rg pseudopotentials Ŵµ and V̂ polµ cannot be
extracted from stable atomic configurations and must be
fitted in order to reproduce electron-atom differential elas-
tic scattering cross-sections as early illustrated in the con-
text of model potential [25–27] or pseudopotential [28]
studies of alkali-rare gas and long distance rare gas-rare
gas diatomics. The forms of the pseudopotentials used
here were recently developed in the context of excitations
in homogeneous rare gas clusters [29,30].

The core-polarization operators may be defined in a
scalar scheme [31]

V pol = −
1

2

∑
λ

αλfλ · fλ (2)

where the sum runs over all polarizable systems λ not
represented explicitly (inner core electrons and rare gas
atoms). αλ is the dipole polarizability and fλ the electro-
static field at center λ produced by the explicit electrons
(resulting field eλ) and the net nuclear charges of all other
centers (resulting field Eλ). The electronic contribution is
damped by a cut-off function Fλ(r) which is introduced
to avoid divergency of the integrals at the origin of the
polarizable centers.

fλ = eλ + Eλ =
∑
i

riλ
r3
iλ

Fλ(riλ)−
∑
λ′ 6=λ

Rλλ′

R3
λλ′

, (3)

The polarization operator may also be expressed within
a semi-local scheme [32] using l-dependent cut-off radii
Fλl. In the present work, we have used the l-independent
version and the Fλ(r) factors were taken as spherical step-
functions with cut-off at radius ρλc.

In fact, this partition can be further simplified in cases
where one is uniquely interested in the Rydberg spectrum.
It can then be reduced to a single active electron problem
as shown below.

The molecular orbitals calculations are performed
within the LCAO (Linear Combination of Atomic or-
bitals) expansion with Gaussian type basis functions and
the present scheme implies the calculation of the matrix
elements of the damped eλ and e2

λ operators in the whole
Gaussian basis set and at every site λ of the lattice.

3 Application and results

Pure solid argon as a van der Waals crystal has an fcc
lattice structure. In our calculation, we modelize the infi-
nite lattice by a finite sample cut from a full fcc crystal.
The atom or molecule to be embedded, acting as a spec-
troscopic probe, is deposited into a vacancy at the center
of the sample. Unlike the Na2 molecule and even the Na
atom in their ground state, the location of which in ma-
trices is uncertain due to the large NaAr distance (about
9 bohr), NO forms a very small and compact molecule with
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Fig. 1. Insertion site for NO in the matrix. Only the atoms
closest to NO are displayed

an experimental interatomic distance of only 2.175 bohr
and its location site in the matrix offers from an exper-
imental point of view a more favorable situation. Accu-
rate ab initio calculations are available for the electronic
ground state of a NOAr trimer [33], keeping the NO dis-
tance fixed at its equilibrium value. Calculations also exist
for some excited states [34]. In the ground state, the isoen-
ergy contours for the argon atom around NO are not quite
isotropic. The energy minimum occurs for the perpendicu-
lar configuration of the NOAr trimer. However, the devia-
tion of these isoenergy surfaces from perfect spheres is very
small. The energy barriers for a rotation of the argon atom
around the N or O sites are of the order of 20 cm−1. The
mean distance of Ar from the center of the NO dimer is
about 7 bohr, which is very close to the nearest-neighbour
distance in the argon lattice. This means, that a NO
molecule in its ground state may replace an atom in an
argon crystal or cluster without inducing a large pertur-
bation of its surrounding. In the present investigation of a
matrix isolated NO molecule, we have simply inserted the
dimer into a substitutional 12-coordinated site of a finite
sample (Oh symmetry) of a fcc crystal (Fig. 1), without
any further geometrical optimization. After insertion of
NO, symmetry is reduced to C4v.

The number of rare-gas shells around the probe was
chosen sufficiently high to expect a direct transfer of the
calculated results to the infinite crystal. In practice, we
successively added shells until the energies of the ground
and relevant excited states had converged up to a precision
of about 100 cm−1. Due to the different nature of the
excited states, convergence was achieved much later for
NO than in our previous study [23] dealing with Na and
Na2. In the case of NO, eight shells were needed ranging
from 6.979 bohr up to 19.740 bohr from the center of NO
and the total number of argon atoms was 140.

Especially the Rydberg orbitals of NO but to a less
extent also the excited states of Na are deformed by the
repulsive pseudopotentials of the argon atoms. This defor-
mation cannot be well-modelized by Gaussian basis func-
tions centered on the spectroscopic probe (Na or NO)
alone. We solved this problem by adding a small 3s1p
Gaussian basis set on the inner shell matrix atoms. Un-
fortunately those functions located on Ar cannot be ob-

tained from atomic calculations, since there is no bound
state for Ar−. The exponents were thus optimized on an-
other system, namely the single electron Na@Ar20 system
(a sodium atom trapped in a dodecahedral argon cluster)
which allows for rapid optimization since only one-electron
integrals are necessary. The exponents (0.2, 0.07 and 0.02
for s functions, 0.09 for the p function) were then found
to allow sufficient flexibility at the vicinity of the Ar cen-
ters and in particular to ensure a good representation of
the wavefunction close to the repulsive region defined by
the pseudopotential. This basis set was supposed to be es-
sentially dependent on argon atoms and therefore transfer-
able. The number of inner shell atoms necessarily depends
on the type of the probe. In the case of NO with its very
diffuse Rydberg states, it was necessary to use basis sets on
the 42 argon atoms of the three first shells (at 6.979, 9.870
and 12.088 bohr) before convergence of the Rydberg ex-
cited states energies could be achieved. Including the NO
basis set (see below), this means a total of 320 Gaussian
type functions on the whole system. The other parameters
defining the rare gas atoms are the dipole polarizability
(αAr = 11.08 a3

0) and the cut-off radius (ρc = 3.00 bohr).
A preliminary task is to determine the Rydberg states

of NO. Actually various accurate Configuration Interac-
tion calculations do exist for the NO molecule [35,36], and
it is not the scope of the present study to compete with
those but to present a scheme which is compatible with
an ulterior treatment of NO embedded in the matrix while
remaining quantitative. The 1s electrons on NO were re-
placed by pseudopotentials of the Durand and Barthelat
type [37,38]. On each atomic site (N and O), the Gaus-
sian basis set was a valence uncontracted 4s4p basis set
[38] augmented by two d-type polarization functions [35]
and two diffuse s and p exponents [35] to describe the
Rydberg states. The NO molecular orbitals are obtained
self-consistently from the Fock operator corresponding to
the NO+ ion

f̂=−
1

2
∆i+

N,O∑
A

(
−

1

RAi
+ŴA(i))+

∑
j∈NO+

(2Ĵj(i)−K̂j(i)
)

(4)

where the Coulomb and Exchange operators run over the
valence 2s and 2p orbital occupied in NO+, namely 3σ2,
4σ2, 5σ2 and 1π4. Although the 1π∗ orbital occupied in the
the NO ground state is a valence orbital, it appears here in
the virtual space. The virtual one-electron energies for the
Rydberg orbitals, (and even for the 1π∗ orbital) already
provide for isolated NO reasonable approximations of the
energy levels and transitions between the ground state
and the Rydberg states (Tab. 1). They can be further
improved by considering the polarization and correlation
of the Rydberg electron with the NO+ core via a unique
core-polarization operator V̂ polc located at the center (C)
of NO, assuming here a mean isotropic polarizability [40]
αc = 7.77a3

0 for NO+. If ec is the damped electric field
created at C by the unique external electron,

V̂c = −
1

2
αc ec · ec. (5)
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Table 1. Adiabatic transition energies from the ground state
in NO without (Te) and with (T pole ) polarization operator at
the NO+ core. All values in eV. Experimental data from Huber
and Herzberg [41].

level Te T pole T expe

3sσ 4.91 5.31 5.45

3pπ 5.85 6.41 6.46

3pσ 5.93 6.56 6.58

4sσ 6.97 7.58 7.52

4pπ 7.30 7.99 7.99

This is a simple approximation since the anisotropic devi-
ations may be non negligeable. One then considers NO+

as a frozen core and diagonalizes the one-electron op-
erator resulting from the addition of the Fock and the
core-polarization operator restricted to the basis of vir-
tual molecular orbitals:

f̂polmn = εmδmn + 〈φm|V̂
pol
c |φn〉 (6)

f̂pol | φm〉 = εpolm | φm〉. (7)

The total energies of the excited states of NO are then
obtained as the sum of the energy of the 1Σ+ ground
state of NO+ and of the one-electron levels involving core-
polarization

Em(R) = ENO+(R) + εpolm (R). (8)

Rather than using the Hartree-Fock NO+ energies of the
present calculation, we have taken the accurate CI poten-
tial energy curve data ENO+(R) of Chambaud and Ros-
mus [39] including all-electron correlation, complemented
through cubic spline interpolation by values at any neces-
sary internuclear distance. The cut-off radius was deter-
mined in order to fit the ionization potentials of the differ-
ent states. However, due to the fact that the X 2Π of NO
with its 1π∗ orbital close to the core is actually not a Ry-
dberg state, the present cut-off value (ρc = 2.126 bohr)
turns out to be a necessary compromise to obtain all
states in a same calculation with a unique cut-off. The
adiabatic ground state ionization potential is found to
be 9.16 eV instead of 9.23 eV (experimental value [41]
lowered by the 0.03 eV difference in the zero point en-
ergies between NO and NO+). The adiabatic transitions
energies from the ground state are listed in Table 1. The
equilibrium distance of the ground state in this model is
2.26 bohr, somewhat larger than the experimental value
of 2.175 bohr. This is, however not too surprising since as
previously mentioned the treatment of that state through
of a one-electron model is somewhat questionable. All
the other states have their equilibrium distance almost
identical to that of NO+ (2.010 bohr). If one looks at
the adiabatic transitions, namely X 2Π → 3sσ 2Σ+,
X 2Π → 3pπ 2Π, X 2Π → 3pσ 2Σ+, X 2Π → 4sσ 2Σ+

and X 2Π → 4pπ 2Π, one sees a remarkable agreement
with experiment. In particular, the values without core-
polarization correction are in error by 0.5−0.7 eV and are
significantly improved in the final calculation. The satis-

factory result obtained for NO shows that polarization op-
erators, which have been essentially used on atoms within
the theory of pseudopotentials can also be extended to re-
produce Rydberg states of molecules. The present quasi-
spherical approximation is the simplest possible version.
We do not report here 3d states since they cannot be de-
scribed in the present calculation (the two Gaussian d-
type functions used here are essentially valence polariza-
tion functions, not diffuse enough to represent Rydberg
states).

We have used in the matrix the same reduction scheme
as for NO. Defining now a one-electron operator including
the electronic part of the polarization pseudopotentials for
the NO+ core and the rare gas atoms

f̂polmn=εmδmn+〈φm|V̂
pol
c |φn〉−

Rg∑
µ

1

2
αµ〈φm|Eµ ·eµ+e2

µ|φn〉

(9)

where the εm are the virtual levels of the NO+ Fock oper-
ator including the Ŵµ repulsion pseudopotentials located
on the argon atoms, the total energy for a state in the
matrix is

Em(R) = ENO+(R)−
Rg∑
µ

1

2
αµE2

µ + εpolm . (10)

The second term in the latter expression accounts for the
energy lowering (1.218 eV for the present sample) corre-
sponding to the static polarization energy of the lattice by
the NO+ charge.

We first examine the wavefunctions. Contour plots of
the matrix-embedded 3sσ (Fig. 2) and 3pπ (Fig. 3) or-
bitals in a plane perpendicular to NO are displayed. One
sees at first that the orbitals, although still ressembling
globally those of free NO, are strongly perturbed and ex-
hibit avoidance at the argon sites, especially the first shell
of nearest neighbours but also the second shell. A conse-
quence of the deformation is also that, due to norm con-
servation of the wavefunctions, the electron density in the
allowed region is increased with respect to the density of
free NO orbitals. This should have importance on the tran-
sition dipole moments.

The exclusion defined by the repulsive potential range
around the rare gas atoms causes a strong blue shift in the
transitions, the compact ground state being almost unaf-
fected, whereas the diffuse Rydberg states are shifted to-
wards higher energies. The data concerning the adiabatic
transitions are listed in Table 2. It should be clear that
the transitions referred here as adiabatic do not imply any
matrix relaxation. They are adiabatic with respect to the
NO coordinate in the sense that the transitions are taken
between the minimum of the X 2Π state at 2.26 bohr and
the minimum of the Rydberg states at R = 2.010 bohr.
They can actually be compared to the (0, 0) absorption
transitions of the work of Chergui et al. [12]. If polariza-
tion contributions are neglected, the effect is such actually
that the cut-off of the Rydberg series is drastic and only
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Fig. 2. Amplitude of the 3sσ orbital of free NO (above) and
matrix embedded NO (below) in a plane perpendicular to
the molecule axis. The distance range extends in the interval
[−15 bohr, 15 bohr] around the center of NO.

-15 -10 -5 0 5 10 15 -15
-10

-5
0

5
10

15

Fig. 3. Amplitude of the 3pπ orbital of matrix embedded NO
in the plane perpendicular to the molecule axis. The distance
range extends in the interval [−15 bohr, 15 bohr] around the
center of NO.

the 3sσ state remains bound (Tab. 2). Its adiabatic transi-
tion energy from the ground state is now 6.871 eV shifted
by 1.96 eV with respect to the same value (Te of Tab. 1)
in free NO. All the upper excited states lie above the ion-
ization threshold at that approximation level. However,
repulsion to the argon electrons is not the only effect.
Polarization and correlation with the implicit electrons
of argon atoms via the core-polarization operators play a
crucial role. Table 2 also shows the transitions obtained
with the core-polarization operators on the rare gas cen-
ters. Once the core-polarization effects are included, three
excited levels are now obtained as bound states, namely
3sσ, 3pπ, 3pσ whereas the upper states are still rejected
in the continuum. This proves at the microscopic level
that the number and position of bound levels result from
a subtile balance between repulsive exclusion and polar-

Table 2. Adiabatic transition energies from the ground state
for matrix trapped NO without and with polarization operator
on the argon atoms. All values in eV. The experimental values
are obtained from the (0, 0) transitions of Chergui et al. [12]
corrected by the differences in the zero point energies taken
from gas phase.

level Te T pole T expe

3sσ 6.871 6.11 6.30

3pπ - 7.41 7.29

3pσ - 7.57 7.43

ization/correlation. All the levels above those three turn
out to be at positive energies, namely above the ioniza-
tion threshold in the matrix. These results are in good
agreement with the findings in absorption spectroscopy of
Chergui et al. [12] who found a cut-off of the Rydberg
series for n ≥ 4 in the case of NO in argon. Moreover,
the calculated transition shifts (0.80, 1.00 and 1.01 eV)
between free NO and NO in the matrix are in satisfactory
correspondence with the measurements of Chergui et al.
(0.857, 0.832 and 0.852 in an argon matrix). One may
notice however that the calculated shifts tend to slightly
increase for 3p states versus 3s states, whereas they are
remarkably stable in the experimental data for all three
transitions X 2Π → 3sσ 2Σ+, X 2Π → 3pπ 2Π, and
X 2Π → 3pσ 2Σ+. It would be interesting to check the
influence of using l-dependent core-polarization operators
on the matrix atoms. Optimization of the vacancy around
NO in the ground state might also bring some improve-
ment.

4 Conclusion

The general formalism presented in Section 2 introduces
an encouraging framework to study with a microscopic
point of view the interaction of excited states of atoms
and molecules or eventually small clusters with inert en-
vironment, cages or matrices. We have demonstrated here
its possibility in a situation which is almost reducible to
a one-electron case. Although the present calculation pro-
vides results in consistency with the experimental data, it
would be interesting to investigate the possible improve-
ment brought by the use of l-dependent cut-off functions.
Their use on NO should introduce more flexibility to de-
scribe simultaneously the ground state and the Rydberg
states of free NO. Their use on the argon atoms may in-
fluence the matrix polarization.

Within this quasi one-electron picture, an immediate
continuation will consist in obtaining the behaviour of
the potential energy curves of the Rydberg states as a
function of RNO, as well as their spectroscopic constants
and dipole transition moments corresponding to absorp-
tion spectroscopy from the ground state, that is keeping
the matrix unrelaxed. A further investigation would be
to consider the relaxation of the matrix in the excited
states, namely the situation occurring in fluorescence ex-
periments. Indeed, very recently by means of fluorescence
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depletion techniques, Zerza et al. [14] have succeeded in
observing intra-Rydberg transitions of NO in an argon
matrix and higher members of Rydberg series with n ≥ 4
could be observed. This was interpreted as the result of
matrix relaxation after the 3sσ 2Σ+ state is populated
and the possibility in the relaxed configuration for more
Rydberg members to exist.

From a methodological point of view the present
scheme is very flexible. Indeed in the present example, and
since we wanted to study essentially the Rydberg states,
we have determined the orbitals of NO+ core through an
explicit valence Hartree-Fock calculation and we have af-
terwards reduced the problem to the external electron
only. One further simplification is to build a pseudopo-
tential describing the whole NO+ core which would define
from the start the problem as a one-electron situation.
This would be mostly efficient for determining matrix re-
laxation in the upper state since one-electron integrals
only will be needed.

An extension in an actual many-electron context would
be necessary to investigate Rydberg-valence interactions.
It is known that at longer RNO distance, one has cross-
ings between the Rydberg and the valence states of NO.
The study of such crossings implies the use of the gen-
eral methodology with Configuration Interaction includ-
ing all the valence electrons of NO. However, the CI size is
the same as for free NO (with however eventually reduced
symmetry). The main difficulty is the dimension of the ba-
sis set for the molecule in the matrix due to the necessary
Gaussian functions on the argon atoms and the burden of
the two-electron integral transformation. This technical
difficulty can however be circumvented either by directly
freezing the highest molecular orbitals in the CI or prob-
ably better by complementing the physical orbitals (those
corresponding to physically bound levels) of the matrix
problem by the non-redundant virtual ones of the isolated
NO fragment using projection techniques.
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